Copied to
clipboard

G = C20.C23order 160 = 25·5

15th non-split extension by C20 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20.19D4, Q8.6D10, C20.15C23, D20.10C22, Dic10.9C22, Q8⋊D55C2, (C2×Q8)⋊2D5, (Q8×C10)⋊2C2, C5⋊Q165C2, C4○D20.5C2, (C2×C10).42D4, C10.54(C2×D4), (C2×C4).20D10, C54(C8.C22), C4.Dic57C2, C4.17(C5⋊D4), C52C8.3C22, C4.15(C22×D5), (C5×Q8).6C22, (C2×C20).37C22, C22.11(C5⋊D4), C2.18(C2×C5⋊D4), SmallGroup(160,163)

Series: Derived Chief Lower central Upper central

C1C20 — C20.C23
C1C5C10C20D20C4○D20 — C20.C23
C5C10C20 — C20.C23
C1C2C2×C4C2×Q8

Generators and relations for C20.C23
 G = < a,b,c,d | a20=b2=1, c2=d2=a10, bab=a-1, ac=ca, dad-1=a11, bc=cb, dbd-1=a5b, dcd-1=a10c >

Subgroups: 176 in 60 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, Q8, D5, C10, C10, M4(2), SD16, Q16, C2×Q8, C4○D4, Dic5, C20, C20, D10, C2×C10, C8.C22, C52C8, Dic10, C4×D5, D20, C5⋊D4, C2×C20, C2×C20, C5×Q8, C5×Q8, C4.Dic5, Q8⋊D5, C5⋊Q16, C4○D20, Q8×C10, C20.C23
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C8.C22, C5⋊D4, C22×D5, C2×C5⋊D4, C20.C23

Smallest permutation representation of C20.C23
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 36)(22 35)(23 34)(24 33)(25 32)(26 31)(27 30)(28 29)(37 40)(38 39)(41 51)(42 50)(43 49)(44 48)(45 47)(52 60)(53 59)(54 58)(55 57)(61 76)(62 75)(63 74)(64 73)(65 72)(66 71)(67 70)(68 69)(77 80)(78 79)
(1 56 11 46)(2 57 12 47)(3 58 13 48)(4 59 14 49)(5 60 15 50)(6 41 16 51)(7 42 17 52)(8 43 18 53)(9 44 19 54)(10 45 20 55)(21 61 31 71)(22 62 32 72)(23 63 33 73)(24 64 34 74)(25 65 35 75)(26 66 36 76)(27 67 37 77)(28 68 38 78)(29 69 39 79)(30 70 40 80)
(1 36 11 26)(2 27 12 37)(3 38 13 28)(4 29 14 39)(5 40 15 30)(6 31 16 21)(7 22 17 32)(8 33 18 23)(9 24 19 34)(10 35 20 25)(41 61 51 71)(42 72 52 62)(43 63 53 73)(44 74 54 64)(45 65 55 75)(46 76 56 66)(47 67 57 77)(48 78 58 68)(49 69 59 79)(50 80 60 70)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,40)(38,39)(41,51)(42,50)(43,49)(44,48)(45,47)(52,60)(53,59)(54,58)(55,57)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,70)(68,69)(77,80)(78,79), (1,56,11,46)(2,57,12,47)(3,58,13,48)(4,59,14,49)(5,60,15,50)(6,41,16,51)(7,42,17,52)(8,43,18,53)(9,44,19,54)(10,45,20,55)(21,61,31,71)(22,62,32,72)(23,63,33,73)(24,64,34,74)(25,65,35,75)(26,66,36,76)(27,67,37,77)(28,68,38,78)(29,69,39,79)(30,70,40,80), (1,36,11,26)(2,27,12,37)(3,38,13,28)(4,29,14,39)(5,40,15,30)(6,31,16,21)(7,22,17,32)(8,33,18,23)(9,24,19,34)(10,35,20,25)(41,61,51,71)(42,72,52,62)(43,63,53,73)(44,74,54,64)(45,65,55,75)(46,76,56,66)(47,67,57,77)(48,78,58,68)(49,69,59,79)(50,80,60,70)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(28,29)(37,40)(38,39)(41,51)(42,50)(43,49)(44,48)(45,47)(52,60)(53,59)(54,58)(55,57)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,70)(68,69)(77,80)(78,79), (1,56,11,46)(2,57,12,47)(3,58,13,48)(4,59,14,49)(5,60,15,50)(6,41,16,51)(7,42,17,52)(8,43,18,53)(9,44,19,54)(10,45,20,55)(21,61,31,71)(22,62,32,72)(23,63,33,73)(24,64,34,74)(25,65,35,75)(26,66,36,76)(27,67,37,77)(28,68,38,78)(29,69,39,79)(30,70,40,80), (1,36,11,26)(2,27,12,37)(3,38,13,28)(4,29,14,39)(5,40,15,30)(6,31,16,21)(7,22,17,32)(8,33,18,23)(9,24,19,34)(10,35,20,25)(41,61,51,71)(42,72,52,62)(43,63,53,73)(44,74,54,64)(45,65,55,75)(46,76,56,66)(47,67,57,77)(48,78,58,68)(49,69,59,79)(50,80,60,70) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,36),(22,35),(23,34),(24,33),(25,32),(26,31),(27,30),(28,29),(37,40),(38,39),(41,51),(42,50),(43,49),(44,48),(45,47),(52,60),(53,59),(54,58),(55,57),(61,76),(62,75),(63,74),(64,73),(65,72),(66,71),(67,70),(68,69),(77,80),(78,79)], [(1,56,11,46),(2,57,12,47),(3,58,13,48),(4,59,14,49),(5,60,15,50),(6,41,16,51),(7,42,17,52),(8,43,18,53),(9,44,19,54),(10,45,20,55),(21,61,31,71),(22,62,32,72),(23,63,33,73),(24,64,34,74),(25,65,35,75),(26,66,36,76),(27,67,37,77),(28,68,38,78),(29,69,39,79),(30,70,40,80)], [(1,36,11,26),(2,27,12,37),(3,38,13,28),(4,29,14,39),(5,40,15,30),(6,31,16,21),(7,22,17,32),(8,33,18,23),(9,24,19,34),(10,35,20,25),(41,61,51,71),(42,72,52,62),(43,63,53,73),(44,74,54,64),(45,65,55,75),(46,76,56,66),(47,67,57,77),(48,78,58,68),(49,69,59,79),(50,80,60,70)]])

C20.C23 is a maximal subgroup of
D20.6D4  D20.7D4  C425D10  D20.15D4  C40.44D4  C40.29D4  D20.39D4  D20.40D4  D20.29D4  D20.30D4  D5×C8.C22  D40⋊C22  C20.C24  D20.34C23  D20.35C23  D20.37D6  C20.D12  D20.28D6  C60.44C23  Q8.11D30  Q8.D30
C20.C23 is a maximal quotient of
C20.47(C4⋊C4)  C4○D209C4  (C2×C10).40D8  C4⋊C4.231D10  Q8.3Dic10  C42.56D10  Q8.1D20  C42.59D10  C10.(C4○D8)  D20.37D4  C22⋊Q8⋊D5  C5⋊(C8.D4)  C42.76D10  C42.77D10  C205SD16  C42.80D10  D206Q8  C42.82D10  C20⋊Q16  Dic106Q8  (Q8×C10)⋊16C4  (C5×Q8)⋊13D4  (C2×C10)⋊8Q16  D20.37D6  C20.D12  D20.28D6  C60.44C23  Q8.11D30

31 conjugacy classes

class 1 2A2B2C4A4B4C4D4E5A5B8A8B10A···10F20A···20L
order122244444558810···1020···20
size112202244202220202···24···4

31 irreducible representations

dim111111222222244
type+++++++++++-
imageC1C2C2C2C2C2D4D4D5D10D10C5⋊D4C5⋊D4C8.C22C20.C23
kernelC20.C23C4.Dic5Q8⋊D5C5⋊Q16C4○D20Q8×C10C20C2×C10C2×Q8C2×C4Q8C4C22C5C1
# reps112211112244414

Matrix representation of C20.C23 in GL4(𝔽41) generated by

0402813
162428
1432351
1114400
,
63500
403500
1114400
1432351
,
186826
352388
32191835
932623
,
40629
04176
1734370
2717037
G:=sub<GL(4,GF(41))| [0,1,14,11,40,6,32,14,28,24,35,40,13,28,1,0],[6,40,11,14,35,35,14,32,0,0,40,35,0,0,0,1],[18,35,32,9,6,23,19,32,8,8,18,6,26,8,35,23],[4,0,17,27,0,4,34,17,6,17,37,0,29,6,0,37] >;

C20.C23 in GAP, Magma, Sage, TeX

C_{20}.C_2^3
% in TeX

G:=Group("C20.C2^3");
// GroupNames label

G:=SmallGroup(160,163);
// by ID

G=gap.SmallGroup(160,163);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,103,218,188,86,579,159,69,4613]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=1,c^2=d^2=a^10,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^11,b*c=c*b,d*b*d^-1=a^5*b,d*c*d^-1=a^10*c>;
// generators/relations

׿
×
𝔽